欧美日韩在线视频,chinese熟妇与小伙子mature,欧美性受XXXX黑人XYX性爽 ,欧美人与动人物牲交免费观看久久

Home > News > News

Safety Footwear selection

Promulgator: admin   Send date: 2011-12-29 11:13 Visitor:

When you have identified the hazards, the next step is to select the proper shoe for the job. It is important to remember that the type of shoe is selected by the hazards the worker is exposed to on the job, not the industry you work in. If worker responsibilities change daily, resulting in exposure to different hazards or environments, their shoes must change with them.
There are multiple options for protecting your feet and lower legs, including:
• Leggings protect the lower legs and feet from heat hazards, such as molten metal or welding sparks. Safety snaps allow leggings to be removed quickly
• Metatarsal guards protect the instep area from impact and compression. Made of aluminum, steel, fibre or plastic, these guards may be strapped to the outside of shoes
Toe guards fit over the toes of regular shoes to protect the toes from impact and compression hazards. They may be made of steel, aluminum or plastic
• Combination foot and shin guards protect the lower legs and feet, and may be used in combination with toe guards when greater protection is needed
• Safety shoes or boots have impact resistant toes and heat resistant soles that protect the feet against hot work surfaces common in roofing, paving, and hot metal industries. The metal insoles of some safety shoes protect against puncture wounds. Safety shoes may also be designed to be electrically conductive to prevent the buildup of static electricity in areas with the potential for explosive atmospheres, or nonconductive to protect workers from workplace electrical hazards 2
In addition to the above, there are specialty shoes used by workers in extreme conditions or who are exposed to explosive or electrical hazards.


Electrically conductive shoes
These provide protection against the buildup of static electricity. Employees working in explosive and hazardous locations, such as explosives’ manufacturing facilities or grain elevators, must wear conductive shoes to reduce the risk of static electricity buildup on the body that could produce a spark and cause an explosion or fire. Foot powder should not be used in conjunction with protective conductive footwear because it provides insulation, thereby reducing the conductive ability of the shoes. Silk, wool, and nylon socks can produce static electricity and should not be worn with conductive footwear.
Conductive shoes must be removed when the task requiring their use is completed. Employees exposed to electrical hazards must never wear conductive shoes2.
Electrical hazard, safety-toe shoes
These are nonconductive and will prevent the wearers’ feet from completing an electrical circuit to the ground. These shoes can protect against open circuits of up to 600 volts in dry conditions and should be used in conjunction with other insulating equipment and additional precautions to reduce the risk of a worker becoming a path for hazardous electrical energy. The insulating protection of electrical hazard, safety-toe shoes may be compromised if the shoes become wet, the soles are worn through, metal particles become embedded in the sole or heel, or workers touch conductive, grounded items. Nonconductive footwear must not be used in explosive or hazardous locations2.
Foundry shoes
In addition to insulating the feet from the extreme heat of molten metal, foundry shoes keep hot metal from lodging in shoe eyelets, tongues or other shoe parts. These snug fitting leather or leather-substitute shoes have leather or rubber soles and rubber heels. All foundry shoes must have built in safety toes2.
In general
Each pair of safety footwear has a code that is printed, stamped, or stitched onto one of the shoes. This label identifies the type of protection the shoes provide. Each line of the label lists specific information. Label information may include the gender the shoe was intended for, protection code, impact resistance, if the shoe is steel toed (if yes, the label will note impact and compression ratings), metatarsal resistance, and specific hazards the shoe is designed to protect against, such as electrical resistance.
Label information and requirements will differ from country to country. For example, the USA, Canada, and Europe each have their own labelling requirements and information. Be sure that your footwear meets the standards of the country in which you are working. You can access information for the United States at www.osha.gov or www.ansi.org, for Canada at www.csa.ca and for Europe at www.osha.europa.eu
The International Organization for Standardization provides the European standard for safety footwear. The current one is ISO 20345: 2004 - previously BS EN 345-1:1993. The codes applicable to European safety footwear are:
Slip resistant footwear
According to published research by the Liberty Mutual Research Institute for Safety, same-level slips and falls represent nearly 11% of all workers’ compensation claims, and more than 13% of all claims cost in the United States.
Proper footwear protects workers against slips and falls, preventing muscle strains and sprains in other parts of the body and back injuries. Slip and fall injuries can occur in non industrial settings such as food service, hospitals and healthcare industries, and retail settings.
Slippery floors can result from snow and ice being tracked into the building, water spills and grease and other contaminant fluid spills. Poor drainage areas and irregular walking surfaces can also cause slip and fall hazards. Well documented housekeeping procedures, correct floor cleaning, proper useage of mats and signs, accessible clean up materials, and slip resistant shoes will help to minimise the risk of slipping3.
Annex II of the European Personal Protective Equipment Directive 89/686, Clause 3.1.2.1 covers the prevention of falls due to slipping, which states: “The outsoles of footwear designed to prevent slipping must be so designed, manufactured or equipped with added elements as to ensure satisfactory adhesion by grip and friction having regard to the nature or state of the surface.”4
According to SATRA Technology Centre, Europe’s leading research and testing centre, the attributes to look for when selecting slip resistant footwear are as follows:
• Good tread pattern - on clean, dry surfaces a tread pattern is not necessary, but on lubricated surfaces an effective tread pattern is required to sweep aside lubricant in much the same was as a car tyre tread
• Flexible soles - give the wearer a good feel for the underfoot conditions, sensing slippery or loose, gravelly surfaces
• Flat sole - maximises contact area between shoe and ground
• Low heel height - molded soles on ‘sensible’ shoes are idea, women’s fashion shoes with separate heels become increasingly unstable as heel height increases and top piece size decreases. Heels should be less than 30mm high with a large, broad top-piece
• High friction materials - a diverse range of rubber and plastic types is used, each in a range of formulations and hardness. Occupational footwear can only be made with a limited range of materials due to the high performance and durability requirements of the PPE standards. These materials are also used in everyday footwear along with many other materials unsuitable for occupational footwear4
Generally, EN ISO 13287:2007 is used to certify safety, protective and occupational footwear. Safety shoes are tested and rated by SATRA to ensure a universal method for slip resistance rating. The requirements for Coefficient of Friction (CoF) for safety footwear are:
Footwear which passes SATRA’s tests will be coded as follows:
• SRA - Slip resistance on ceramic tile floor with SLS*
• SRB - Slip resistance on steel floor with glycerol
• SRC - Slip resistance on ceramic floor with SLS* and on steel floor with glycerol
*SLS = Sodium Lauryl Sulfate solution
Once tested and certified, the ‘CE’ mark is applied to footwear products. These ratings will be stamped in the shoe or on the label, helping you select the most applicable slip resistant shoe for your environment. Shoes with the SRC rating are the most stringent specification.
Whether the risks at your worksite include heavy or sharp objects, corrosive chemicals, slippery floors or exposure to electricity, no work environment is free of hazards to the feet. Wearing the proper protective footwear for the job can help prevent damaging injuries. Ensure you understand the hazards at your site, so you can proactively take the right steps for safety.

Copyright 2012 Guangzhou Aontion shoes co., LTD All Rights Reserved  粵ICP備12078401號(hào)

Address:Guangzhou YanLing road 436 wide ring building 2002 room   Tel:86-20-87735239  Fox:86-20-87264239